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Synthetic Fiber Manufacturing 

 
1  Introduction  

 The manufacture of synthetic fibers represents a huge industry, both in the United 

States and worldwide.  In 1990, the dollar value of synthetic fibers was roughly $17 

billion in the U.S. and $70 billion worldwide.  Natural fibers, consisting mainly of cotton 

and wool, but also including silk, yielded total dollar values only slightly higher. 

 We sometimes forget how much of these fibers we consume, especially since the 

appeal of "natural" fibers of cotton and wool has grown in recent years.  Despite 

questions of aesthetics and taste, there should continue to be a significant demand for 

synthetic fibers, in large part because these fibers can be tailor-made to provide specific 

properties that natural fibers cannot provide. 

 As chemical engineers, we are interested in the manufacture of synthetic fibers 

because we have been the principal developers of the processes used to produce the fibers 

and because we are usually the ones charged with overseeing and improving the 

manufacturing operations. 

 As students of chemical engineering, we are interested in the manufacture of 

synthetic fibers because the process involves several fundamental aspects of chemical 

engineering.  Once we understand this process thoroughly, we will be in a position to 

understand other chemical processes quite easily.  The goal here is to provide us students 

with the motivation and curiosity to learn these fundamental concepts; such motivation is 

supposed to stem from exposure to practical and somewhat familiar operations where the 

value of learning the fundamentals will become self-evident. 

 Figure 1.1 depicts the four main areas of fiber manufacture:  pumping, filtration, 

fiber forming, and fiber treatment.  We have purposely excluded the production of the 

polymer melt or solution, so that we could focus on those fundamentals associated with 

the transport phenomena, rather than the chemistry, of fiber production.  We also point 

out that synthetic fibers include not only the familiar examples of nylon or polyester, but 

also could extend to fiber optic cables and wire, etc. 
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Fig. 1.1  Synthetic Fiber Module — Principal elements
 

 
 Table 1.1 depicts the principal elements of transport phenomena fundamentals 

which, are either described or might be included in the detailed study of the process of 

synthetic fiber manufacturing.  Illustrated in Table 1.1 are the principal elements covered 

in the module, which also might be seen in the table of contents of a textbook on 

transport phenomena.  Particularly noteworthy is the breadth of topics included in this 

one module, ranging from pumps and filtration to transport analogies for the three modes.  

The student may be less interested in this particular table than the teacher, who is often 



concerned with extent of coverage.  Clearly, the main goal at the present is to preserve the 

student's interest and curiosity by emphasizing the relevance of the topics. 

 

Table 1.1 Transport Phenomena and Mathematics Fundamentals 
 

FLUID MECHANICS
Flow through tubes
Flow through packed beds
Flow perpendicular to cylinders
Drag along a cylinder
Pump selection, Filtration
Eulerian, Lagrangian perspective
Reynolds number, Viscometry

HEAT TRANSFER
Temperature rise across filter bed
Unsteady-state heat conduction
Empirical heat transfer coefficients
Quenching heat transfer
Prandtl number, Transport analogies

MASS TRANSFER
Unsteady-state diffusion of mass
Relative resistance to mass transfer
Empirical mass transfer coefficients
Schmidt number, Transport analogies

       Partial Differential Equations
       Shell Balance Technique
       Sensitivity Analysis

SYNTHETIC FIBER MANUFACTURE MODULE

MATHEMATICS

 
 
   In Figure 1.2, we attempt to provide the student with some orientation and 

introduction to the glossary of fiber production.   

 Fabric This includes a description of the difference between non-woven and 

woven fabrics.  Whereas woven fabrics have an orientation associated with them, in 

which the fibers are normally aligned either parallel or perpendicular to each other, non-

woven fabrics do not possess any preferred fiber orientation.  With synthetic fibers 

produced from molten polymer, non-woven fabrics can be bonded together by having the 

filaments laid down over one another while they are still molten.  As they cool and 



solidify, they are "glued" together.  The fibers can be laid down in much the same way 

that paint appears to be laid down in a Jackson Pollock painting! 

Fabric                        
    •  non-woven
   •  woven

Fibers
• continuous
• staple

Fibers
• natural
• synthetic

Synthetic Fibers           
        • carbon fibers
        • Kevlar
         • Spandex

• Polyester
           • Nylon
           • Acrylics

• Rayon
• Nomex

Fiber Manufacture
• Melt Spinning
• Dry Spinning
• Wet Spinning

 
                     Figure 1.2 Synthetic Fibers — A Little Taxonomy  

 

 Fibers   can be either natural or synthetic and either continuous or staple.  Natural 

fibers, of course, can come from either animals or plants and probably the most well 

known example of each are wool and cotton, respectively.  Their chemical structure is 



polymer-based, in that a regular, repeat structure can be found in natural fibers.  Synthetic 

fibers, too, are based on a regular polymeric structure.  However, synthetic fibers are 

manufactured, or "synthesized," usually from oil, but sometimes from coal or natural gas.  

Most of the synthetic fibers are from polymers produced by step polymerization (usually, 

condensation polymers) but many are made from polymers produced by chain 

polymerization (addition polymers). 

 All natural fibers have a finite length associated with them, ranging from about 5 

to 20 cm.  This could be the length of the hair on the sheep (wool) or the length of a 

cotton filament in a cotton plant.  In order to be woven into a fabric, these filaments must 

first be aligned together into a continuous strand, called yarn or thread.  Spinning 

machines are used to accomplish this.  The filaments are held together by van der Waals' 

type forces.  The thread and yarn produced in this way contain occasional filaments, 

which stick out away from the continuous strand; this is somewhat like branch groups on 

a polymer, albeit at a much larger scale.  In any case, these filament branches help to 

provide the woven fabric with greater bulk and porosity and are associated with other 

positive aesthetic features of the fabric.  Synthetic fibers, however, can be made into 

continuous filaments, which are practically infinite in length.  Although the individual 

polymers in the filament are 1000x longer than wide, they are still usually tiny fractions 

of millimeters in length. A "yarn" can be made of these filaments simply by bringing the 

filaments together continuously as the filaments are produced.  This will not produce a 

yarn with filaments, which occasionally stick out from the strand, however.  In order to 

produce such a result, in some processes the continuous strands are chopped into strands 

of finite length, so that there is a somewhat closer match between the synthetic and the 

natural fibers.  These chopped-up sections are called "staple," and the staple is brought 

together again in spinning machines which operate just like those used with natural fiber.  

Another difference between natural and synthetic fibers is that the natural ones are usually 

curlier.  Two techniques have been used to make the synthetic fibers and yarn more curly:  

one is to pass the yarn between two heated gears which can impart a permanent crimp to 

the yarn, the second is to produce the synthetic filaments from two different polymers 

passing out of a common hole, or die.  The resulting filament will exhibit varying 



curliness, based on humidity conditions if the two polymers absorb water to differing 

degrees and if the absorption changes the shape of the filaments accordingly. 

 Synthetic Fibers This list brings together most of the fibers with which the 

students are already familiar.  Most are made from condensation polymers, although 

acrylic is not one, and carbon fibers are made from addition polymers subjected to a 

pyrolysis step to kick off the hydrogen atoms. 

 Fiber Forming This section includes a brief forecast of what will be covered 

subsequently.  In particular, the three principal fiber-forming processes of melt, dry, and 

wet spinning are described briefly. All three steps involve the formation of continuous 

filament strands by forcing the material through circular dies, but melt spinning involves 

cooling of the subsequent strand to form the solid filament, whereas dry and wet spinning 

involves removal of a solvent to form the solid filament.  In dry spinning the solvent 

evaporates into a gas and in wet spinning the solvent is leached into a liquid bath. 

 Figure 1.3 shows a schematic of the melt spinning process, and thus illustrates the 

key elements listed in Figure 1.1.  The molten polymer (in the case of dry or wet 

spinning, the spin dope) is first pumped through a filter, which removes any tiny particles 

that can be trapped in the tiny spinneret holes.  The polymer is then forced through these 

tiny holes to form continuous strands of polymer filaments, or synthetic fiber.  Cooling 

gases reduce the temperature of the filaments so that they solidify and an initial drive roll 

controls the initial take-up speed.  The fiber may undergo subsequent heating and 

stretching to impart additional molecular orientation.  Finally, the fiber is taken up onto 

bobbins at a constant speed, with a special tension control device to control the rate of 

rotation in order to maintain constant yarn speed. 
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Figure 1.3  Sketch of Melt Spinning Process  
 
 



 
2.0 Pumping 
 
 In this section, we introduce two of the main devices used to pump liquids:  

centrifugal pumps and gear pumps.  The centrifugal pumps are general-purpose devices 

used to move low-viscosity liquids around in a process; gear pumps are used to pump 

highly viscous liquids at a controlled flow rate.  In order to form synthetic fibers, a 

viscous liquid must be pumped through a filter bed and then through tiny spinneret holes, 

and both units will result in high-pressure drops along the flow direction of the viscous 

liquids.  Finally, the flow rate must be maintained within close tolerances in order to 

produce synthetic fibers of uniform diameter.  Gear pumps are used to provide such a 

closely regulated flow of the highly viscous liquid; although gear pumps could also be 

used to develop the high pressures required to force the material through the filter and the 

spinneret, it is more common to use screw extruders for this purpose.  

 

Centrifugal
pumps

Low viscosity liquids (water, etc.)

Flowrate, Q , is proportional to rotational speed and cube of impeller
diameter for no downstream resistance. Pressure at outlet for choked flow
condition is proportional to square of both rotational speed and impeller
diameter. Viscosity  is less important than liquid density  in determining
pump performance.

Figure 2.1 Sketch of centrifugal pump 

 



2.1 Centrifugal pumps Perhaps the best way to understand the way centrifugal pumps 

work is to recall the mechanical energy balance equation.  (In the present analysis, this 

will be Bernoulli's equation, with the additional term of shaft, or pump, work included.) 

 

The mechanical energy balance (MEB) equation is: 
 

  
∆ub

2

2
 + g∆z + dp

ρ  + lwf + Ws
p1

p2

= 0  (5-1) 

 
Recall that this equation is valid, under steady-state conditions, along a streamline of the 

liquid.  Since we are dealing with a liquid of relatively low viscosity, we can ignore the 

viscous term, lwf, and, with constant density, the integral term simplifies, so the modified 

MEB equation (Bernoulli's equation with shaft work included) becomes: 
 

  
∆ub

2

2
 + g∆z + ∆P

ρ  + Ws= 0  (5-2) 

 
Referring to Figure 2.1, we see what amounts to a spiral fan, with the inlet at the fan axis 

and the outlet in a line tangential to the tip of the rotating fan.  The fan, or impeller, is 

usually of uniform thickness or width and is sandwiched in a casing formed by two 

parallel disks, which are sealed at the edges with a short, squat cylinder with one exit 

tangential to the cylinder.  In operation, the liquid enters along the axis, into the "eye" of 

the impeller and both the pressure and velocity are relatively low at this entrance.  As the 

liquid travels through the pump, the rotating impeller (previously, spiral fan) imparts 

shaft work to the liquid as the liquid develops higher, mainly θ-direction, velocity.  As a 

matter of fact, within the pump, 
 

 v  =  0 er  +  (VR)(r/R) eθθθθ  +  0 ez                   (5-3) 
 
Where VR is the θ-direction speed of the liquid at the tip of the impeller (which should 

only be slightly less than the actual tip speed, depending on the design of the pump) and 

er, eθθθθ, and ez are the orthogonal unit vectors in the r, θ, and z directions, respectively.  

The reason that vθ varies linearly with r/R is geometric; think of the example of a rock 



attached to a string as you swing the rock around your head—the θ-direction velocity of 

the string at any radial position varies as r/R.  This means that the amount of motor power 

delivered to the impeller is concentrated towards the outer parts of the impeller, because 

the shaft work is proportional to the square of the velocity, from Equation (5-1).  Getting 

the liquid out to a radial position halfway towards the exit requires only one-fourth of the 

power and two-thirds out still less than half (only 4/9) of the power.  At the tip of the 

rotating impeller, most of the pump power or shaft work has gone into increasing the 

velocity of the liquid; the MEB equation shows that this arises in the kinetic energy term.  

If the liquid encounters no resistance downstream of the pump—let's say that it goes 

directly into a vertical fountain with no additional change in cross-sectional area of the 

exit tube—then very little pressure is "developed" by the pump.  Again, pursuing the 

fountain example, you will recall calculations in physics about how the height reached by 

a ball thrown into the air can be calculated from the conversion of kinetic energy at the 

bottom to potential energy at the top, and you realize that the same thing could be done 

here.  You could, theoretically, calculate the impeller tip speed from the height of the 

vertical fountain.  Of course, you quickly realize that problems with friction inside the 

pump, changing tube sizes, and friction with the air would likely render the calculation 

too inaccurate.  But you do realize that the same principle can be applied here.   In the 

typical setting, the fluid does encounter resistance downstream of the pump.  In the 

extreme, the resistance is infinite (the valve is closed!) and now the pump is used to 

develop pressure, instead of velocity.  If we now apply the MEB equation from the 

impeller entrance to a point just past the rotating impeller, where the liquid velocity is 

zero, the change in kinetic energy, KE, is zero, but the change in potential energy, ÆP/r is 

equal to the shaft work, Ws (per unit mass of liquid pumped).  

 Before we move on to some of the design equations with centrifugal pumps, we 

should briefly mention some other pumps for low-viscosity liquids: 

 Straight-through pumps:  Axial fan and turbine pumps are typical of these units, 

although they are more commonly used with gases. 

 Piston/cylinder pumps:  Multi-stroke units are used as metering pumps, where a 

constant flow rate, though pulsating, is needed; single-stroke units are typified by infusion 



pumps, which are useful in medical applications where medicine has to be titered into a 

patient over a sufficiently long time period that replenishing the stroke volume produces 

no problem. 

 Airlift pumps:  These produce vertical, two-phase flow and, although they are not 

energy efficient, are relatively cheap and can be used with highly corrosive liquids.  Drip 

coffee makers work on this principle, moving the hot water to the top by vaporizing a 

portion of the water and the resulting steam bubbles rise in a tube, dragging and pushing 

the hot water upwards. 

 

2.2 Gear Pumps These pumps are also aptly named, since they consist of two 

intermeshing gears.  One intriguing part of these pumps is that, for most people, the flow 

goes in a direction different from that first thought.  Referring to the sketch on the 

diagram, we see two rotating gears, set in a Figure-Eight chamber, with the fluid being 

carried around the outside periphery of each gear before meeting again to be pumped 

away.  As a matter of fact, the fluid is carried in discrete packets as it moves towards the 

exit.  Each packet moves at a speed directly proportional to the rotational speed of each 

gear, so the total volumetric flow rate is proportional to the rotational speed of the pump. 

 

Gear pumps
High viscosity liquids (molten polymers, etc.)

Positive Displacement

Flowrate, Q, is proportional to 
rotational speed. 
Pressure buildup, within a wide 
range, depends on downstream 
resistance and not Q.  The liquid 
viscosity must be high enough so 
that liquid does not leak back 
around the gears.

 



Figure 2.2 Sketch of section of a gear pump 

 

 Although the gear teeth are shown in the diagram as square-toothed, they can also 

be sinusoidal.  If the gears are sinusoidal, then the output flow rate from one gear will 

vary sinusoidally, from zero to a maximum value.  Corresponding output from the other 

gear will also be sinusoidal, but the phase difference will be exactly π.  This means that 

sum of the two outputs will be a steady, or uniform, flow because the two flows will 

exactly balance each other.  While this is not exactly like destructive wave interference 

learned in physics in the study of light and sound waves, since we have a uniform 

maximum output remaining, it does appear similar. 

 In fiber spinning operations, the gears are normally square-toothed, with a 

relatively large number; say 40 or more, teeth per gear.  The gears are usually designed to 

operate over a relatively narrow range of rotational speeds and many utilize a standard 

diameter, so additional capacity, or flow rate, are obtained by choosing gear units of 

varying thickness.  This would be analogous to centrifugal pumps being designed for 

higher flow rates by using impellers of greater thickness.  For other applications, such as 

pumps for heavy oils and lubricants, one normally finds fewer teeth per gear (perhaps 

eight or so) and a sinusoidal shape to the teeth. 

 With gear pumps, the clearance between gear teeth and barrel of gear housing is 

important, because, with an adverse pressure gradient, the liquid can leak back through 

the pump through this clearance.  This is one of the reasons that gear pumps used in fiber 

spinning, which may be exposed to opposing pressures of a 1000-psi, are square-toothed.  

The flow between the teeth tips and the barrel is nearly Coquette, which the student will 

recall as flow between parallel plates.  One can calculate the amount of leakage by taking 

into account the difference between the drag flow, produced as one moving parallel 

produces a linear velocity profile and flow in the pumping direction, and the adverse 

pumping flow, which produces a parabolic type of flow in the opposite direction.  This 

difference can be shown to depend strongly on this distance between the teeth tips and the 

barrel. 
 



 
 

3.0 Filtration 
 

 Starting up a spinning line is a complex operation and one wants to minimize the 

frequency.  It also is time-consuming to replace spinneret plates and filter beds.  Inclusion 

of particles, whether they are thermally degraded polymer or small chips of metal, can 

lead to imperfections along the filament and potential points where the filament may 

break.  Worse still, the particle may become attached to the entrance to a tiny spinneret 

hole and this could reduce the flow to that hole and thus the diameter of the resulting 

filament; this smaller filament will cause the yarn to take up dye differently and the 

resulting non uniformity will show up in the final fabric.  Another problem with partial 

blockage of flow is that the blockage may be nearly complete, leading to breaking of the 

filament, which is usually only a very slight problem, since there are so many filaments, 

although gradual oozing of the melt through the nearly blocked hole can be a very major 

problem.  It becomes a major problem because the polymer, as it oozes out the hole, will 

gradually travel to neighboring holes and interfere with the filaments from them as well.  

The only solution for this problem is to shut down the line and remove and clean the 

spinneret plate. 

 Since there can be up to 1000 holes in a spinneret plate, the large number means 

that the filtration process must be completed to very exacting standards.  Similarly, 

because one wants to operate the line for long periods of time between shutdowns, one 

wants to use a filter medium which can trap a large number of particles without causing 

excessive pressure drop or blinding of the filter.  This brings us to the first part of 

filtration, deciding between filter screening and entrapment among small particles. 
 
3.1 Screen Filtration  

 Before the mid 1960's, draft beer was sold in large containers, called kegs, under 

refrigerated conditions.  Draft beer, which had not gone through a high temperature 

pasteurization step to destroy the yeast and any bacteria, had to be consumed within a 

short time of its brewing and had to be kept refrigerated prior to consumption, in order to 

avoid problems with further fermentation.  Purists liked the draft beer because they 



claimed that the pasteurization step, which was necessary for beer sold in small 

containers at room temperature, would destroy some of the delicate flavors of the beer.  In 

the 1960's, the beer manufacturers found that one could substitute an extremely fine 

filtration process for the pasteurization step, since all the yeast and bacteria could be 

simply filtered from the beer.  The relatively small molecular species producing the 

delicate flavors could pass through the very tiny filter holes.  The resulting beer could be 

packaged under sterile conditions and could then be sold in cans or bottles stored at room 

temperature.  This is an example of very fine screen filtration, where the requirements for 

filtration of the yeast and bacteria could be carefully determined.  Of course, the yeast 

does tend to pile up on the filter screen and blind it periodically, requiring replacement of 

the filter screen. 
 

            

Screen Filter     (Drip coffee maker)

suspension (liquid plus particles)

screen

clearfiltrate
Examples:  oil filter, chemistry 
lab, air filter,water filters
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Fig. 3-1 Screen Filtration 

 

 Screen filtration can be accomplished under batch or continuous operation.  For 

example, a rotary filter, with continuous scraping of filter particles from the surface of a 

rotating screen, can provide continuous filtration.  With batch filtration, as described 

above for the beer example, the operation can be conducted under a) constant pressure, in 

which the volumetric flow rate decreases with time or b) constant flow rate, in which the 

pressure drop increases with time, as the filter becomes loaded with particles.  

Commercially, one frequently encounters operations requiring the filtration of particles, 

which are rigid and incompressible, unlike bacteria.  With these liquid/particle systems, 

the particles build up on the screen, forming a filter cake.  If the resulting filter cake is 



indeed incompressible, equations (from Momentum, Heat, and Mass Transfer, 3rd ed., by 

C. O. Bennett and J. E. Myers, McGraw-Hill, New York, (1982), p. 233) for the filtration 

process are: 
 

θf = K1
2P

Vf
2 + K2

P
Vf    (3-1) 

 
Where θf is the filtration time, Vf is the volume of filtrate, P is the pressure difference 

(usually upstream gage pressure for atmospheric filtration) and K1 and K2 are 

characteristics of the filtration, suspension concentration, and particle size and shape.  K1 

and K2 relate to the resistance of the collected particles and screen, respectively, and 

would normally be determined by experimentation, although Bennett and Myers do 

provide equations to relate the values to such variables as specific cake resistance, 

concentration, and viscosity of fluid. 

 For filtration at a constant volumetric rate q0, the equation is:  

  ÆP = K1q0
2θ+ K2q0    (3-2) 

 
Where K1 and K2 are the same as for constant pressure filtration.  Thus, one can predict 

constant flow rate filtration performance from constant pressure data and vice versa.  All 

of this is predicated on incompressible filter beds, however, and at least half, if not more, 

commercial slurries exhibit compressible bed performance.  Although one can attempt to 

account for this by a dependence of specific cake resistance on pressure, the final design 

normally requires close experimental verification anyway. 

 

3.2 Deep-bed filtration 

  



Deep Bed 
Filter filtered

partices Suspension

very coarse sand

Delaware (Lewes/
Rehoboth Beach)

Ocean City
(fine sand)

support grid

sand particles

Advantages:  High Capacity, doesn't blind

Design requires experimentation

Polymer melts use deep bed filters
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Fig. 3-2  Deep-bed Filtration  
 

 With deep-bed filtration, illustrated by Fig. 3-2, the particles to be captured are 

entrapped in the interstices among particles held in a deep bed.  The sizes of the 

interstices are roughly the same order as the size of the particles in the bed, so, in order to 

maximize the capacity of the bed, the particles are laid down in such a way that a gradient 

of particle sizes exists in the bed.  Larger bed particles at the top, or beginning, of the bed 

will tend to trap the larger particles and smaller bed particles at the bottom of the bed will 

trap the smaller ones.  The example on the sketch shows a gradation in sand particle sizes 

produced by taking the sand from different locations along the eastern seaboard.  In 

practice, although sand is frequently used in such deep-bed filters, it usually is riverbed 

sand and not salt-water sand, because the former tends to be more free of extraneous 

materials.  

 The pressure drop for laminar flow (which will certainly exist for molten polymer 

melts and polymer spin dopes) can be calculated from the mechanical energy balance 



equation, MEB, and the Kozeny-Carman equation.  The MEB (from Bennett & Myers) is 

written as: 

 

∆ub
2

2
 + g∆z + dp

ρ  + lwf + Ws
p1

p2

= 0
   

(3-3) 

 
ub is the bulk, or average velocity, ∆z is the change in elevation, p is pressure, ρ is 

density, lwf the lost work due to friction, Ws is the shaft work introduced to the system.  

The Kozeny-Carman equation is: 
 

fp = 150
Rep

     (3-4) 

 
Where 
 

fp = D(lwf)ε3

Lubs
2 (1-ε)

    (3-5) 

 
And 

Rep = D(ubs)ρ
µ(1-ε)

    (3-6) 

 
f is the friction factor, D the particle diameter, ubs is the superficial liquid velocity, L is 

the length of the bed, ρ is the liquid density, and ε is the void fraction of the bed.  

 



On account of the high liquid viscosities, pressure drop through the bed can be enormous.  

This can lead to significant temperature increase, since one can demonstrate from 

thermodynamics:   

∆H = ∆P/ρ  +  Cp∆T  =  0  (3-7) 

 

The enthalpy change is zero since the operation is adiabatic and there is no shaft work in 

the process.  Temperature increases of 20 F° are readily possible. 
 



4.0 Spinning 
 
 As mentioned previously, fibers are formed by the extrusion of the polymer melt 

or spin dope through tiny holes in a spinneret plate.  Such a plate may contain 1,000 holes 

or more.  Textile fibers are relatively fine, so the diameter of the hole may be only a few 

mils, (one mil is 0.001 inches or 25.4 µm).  The thickness of the filament is generally not 

given in linear dimensions, but rather in terms of mass per length.  For some reason the 

fiber industry has adopted the terms denier and denier per filament, dpf, to express the 

filament size.  One dpf corresponds to a mass of 1 g in a length of 9000 meters!  If the 

density of the polymer is 1 g/cm3, this would correspond to a diameter of 1.2 x 10-3 cm, 

or about half a mil.  Typically, textile fibers are in the range of 3 to 15 dpf.  Recall that 

one g is roughly 1/30 of an ounce. 

 In melt spinning, the filaments are normally drawn down, or stretched, just 

downstream of the spinneret holes.  The stretch is of the order of 2 to 3x, so the spinneret 

hole may be 50 to 75% larger than the filament diameter when it is first cooled.  

Additional post-formation stretching may also be used, however, so that the final filament 

diameter may be one-half or less than the diameter of the spinneret hole. 

 The spinneret hole is usually only slightly longer than its width, in part to 

minimize pressure drop at the plate.  But the plate still has to be strong enough to 

withstand the upstream pressure.  For this reason, the melt passes through a conical 

section before reaching the final spinneret hole, so that the plate can be relative thick (see 

Fig. 4.1).  Pressure drop through this converging section is very difficult to calculate for 

these polymeric materials, because the extensional flow rheology is usually not well 

characterized.  One can readily visualize the alignment of the polymer molecules in the 

converging section, where the polymer undergoes a severe stretching step.  Ignoring this 

pressure loss, let us focus on the spinneret hole itself. 

 An important question here is whether one can use the Hagen-Poiseuille equation 

to compute the pressure drop in such a short tube.  To  help answer this question, we first 

compute the entrance length, which is approximately equal to the axial distance 

downstream from a tube entrance at which the momentum boundary layers merge at the 



center axis, where a fully parabolic profile is established.  This distance, from Transport 

Phenomena, by Bird, Stewart, and Lightfoot, Wiley, New York, (1960), p. 47, is  

 

Le/D  =  0.035 Re    (4-1) 

Where Le is the entrance length, D is the tube diameter and Re is the Reynolds number.   

 

Spinnerets —Melt Flow--momentum transport

spinneret
plate

I. D. =  2 to 10 mils
(1 mil = 0.001 in)

spinneret holes
500 to 1500 holes per plate

This produces "yarn" with up to 1500 filaments
Flow in spinneret hole:    (momentum transport)

Hagen-Poiseuille equation for flow  (flow in a tube)
Q =   (πD  /128µ)(−∆P/L)4

where Q is volumetric flow rate, D is diameter of hole, L is length of hole, 
²P is pressure drop across hole, and µ is viscosity of polymer melt.

Note that Q is:          proportional to ²P
                            inversely    "        to L,
                 proportional to D4

Net force on fluid in tube  = ²P(šD  /4)  =  shear stress x tube wall area

=   τ    x š D L

{can derive the Hagen-Poiseuille equation} 
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melt flow

Fig. 4.1  Flow in spinnerets  



For a representative calculation, we consider nylon melt, with a viscosity of 200 Poises, 

being spun from a hole 10 mils in diameter at a final spinning speed of 2,000 ypm and a 

stretch of 5x between the spinneret and the final take-up.  This means that the bulk 

velocity, ub, in the spinneret hole is 400 ypm.  The Reynolds number, for a specific 

gravity of about one, is: 

 

Re  =  ub D/ν    =  0.077   (4-2) 

 

so the entrance length calculated from Eqn. 4.1 is less than 3 thousandths of the diameter 

of the hole.  Therefore, we can safely use the Hagen-Poiseuille equation to calculate the 

pressure drop.  The equation is: 
 

∆P
L

 = - 32 µ ub

D2
    (4-3) 

 
For the nylon example we just explored, the pressure drop is predicted, for a length of 3.0 

mils, to be 2200 psi.  This pressure drop might be a bit excessive in practice, but the 

method of calculation remains illustrative.  One part of the calculation, which was not 

taken into account, is the power-law behavior of most polymer melts and polymer 

solutions.  Such behavior usually is revealed by a shear-thinning response, in which the 

apparent viscosity decreases as shear rates increase.  This would lead to significantly 

lower pressure drops for the spinneret plate. 

 As the polymer exits the spinneret hole, it tends to swell and this swell is 

especially noticeable at low filament tensions.  Apparently, the polymer molecules must 

coil under the shearing action within the hole and, as it exits, the polymer molecules are 

free to uncoil, as seen by an expansion of the polymer stream jetting out of the hole.  This 

phenomenon is referred to as "die swell," and can even amount to a doubling or more of 

stream diameter. Newtonian fluids can also be shown to exhibit a swelling at the exits of 

tubes, even at very low Re; the predicted extent of swell is about 14% for Newtonian 

fluids.  Since, in fiber spinning, the filaments are under tension, the extent of die swell is 

considerably reduced.  Furthermore, the extent of swell appears to have no influence of 



final filament properties.  In order for the filaments to undergo stretching, some power 

must go into the stretching motion immediately downstream of the spinneret plate, but the 

amount of this power is negligible, as described in the next section. 

 

4.1 Melt Spinning 

 In the spinning of molten polymers, such as nylon, polyester, and polypropylene, 

melt spinning begins with a cooling of the molten filament after it leaves the spinneret.  

At the same time, the filament is pulled downwards towards the take-up section and this 

resulting tension in the molten filament provides a stretching action in the molten 

filament itself.  In most melt spinning operations the degree of stretch is of the order of 

3x, which means that the velocity of the initially cooled, or solid, fiber is about three 

times the average velocity of the melt coming out of the spinneret.  For some filaments, 

this initial stretch is very important in helping to establish properties in the polymer, 

which depend on whether one deals with the properties in the fiber axis direction or in the 

fiber radius direction.  This directional dependence of properties is called anisotropy and 

the usual example is that of a slab of wood, in which strength and fracture properties 

along the grain are quite different from properties across the grain.  (With many fibers, 

however, these properties are controlled downstream, where the fibers are reheated, 

stretched further, and cooled again.) 

 In any case, the polymer melt, once it comes out of the spinneret hole, starts to 

cool down and also starts to stretch out.  Because the "apparent viscosity" of the melt 

increases rapidly as the melt cools, most of the stretching takes place in a region relatively 

close to the spinneret hole whereas "most" of the cooling takes place well away from this 

hole.  But these terms and descriptions are not exact and are not easily quantified.  The 

real advantage in using these descriptions is that it permits us to make a simplifying 

assumption as we analyze the melt spinning process.  The assumption is:  We can 

separate the stretching and cooling operations into two separate distinct regions, with the 

first occurring relative close to the spinneret (say, within 10% of the distance to the first 

take-up, or speed-control roll), and the second over the remaining distance to the first 



take-up roll.  If need be, we could return later to this assumption to determine its degree 

of accuracy, but let us accept it for the moment. 

 The stretching region, within which the relatively long polymer molecules become 

aligned along the filament axis, might be characterized by very complex rheology.   

Within the field of polymer processing, rheology deals with the relationship between 

stress and the history of strain; for Newtonian fluids, you can recall that the fluid stress is 

proportional to the instantaneous rate of strain (the shear rate).  We are not really too 

concerned with the polymer melt rheology here, however, since it will not likely be 

important in determining the power required for the first drive or take-up roll.  Frictional 

and interfacial stresses are likely to be far more important.  Therefore, in terms of design 

considerations, we can probably ignore that part of the melt-spinning process in which the 

initial, post-spinneret stretching of the polymer melt occurs and focus instead on the 

cooling step of the melt spinning operation. 

 



Energy Transport/Melt Spinning
Cooling of Hot Filament Downstream of Spinneret

Cross-sectionalview to 
show heat flowing 
radially outward

(partial differential equation)

Boundary conditions:  (a) Initially (t = 0), the temperature is uniform at all points within the 
molten filament at To. 
(b) at the center point of the filament, the temperature is not infinite 
(c) at the outside radius of the filament, the temperature is identical to surrounding fluid 
temperature (infinite h).

dependent variable = T, temperatureindependent 
variables = θ, time & r, radial position

Solution (presented analytically):

Solution (presented graphically):
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∞
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Fig. 4-2 Cooling of filaments in melt spinning
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 Perhaps the most important design consideration in the melt spinning process is 

the cooling of the filaments, Fig. 4-2.  In order to simplify our analysis, we restrict our 

focus to the point where the filaments have reached a uniform diameter (recall that we 



previously asserted that this is a relatively short distance) and that they are at some initial 

temperature, which will be somewhat cooler (by about 20 C°) than the melt temperature 

at the spinneret exit.  At this point, the temperature within the filament will depend on 

radial position, with the maximum occurring at the center, on the filament axis.  We shall 

invoke an approximation of a flat temperature profile, in which the temperature does not 

vary with r, at this initial position in order to utilize existing mathematical solutions.  An 

important part of learning engineering is to learn how to take "appropriate shortcuts" 

which save time with little sacrifice in accuracy.  This is one example.  The melt spinning 

process is steady: viewing the spinning thread lines at a fixed position (the so-called 

Eulerian perspective) shows that nothing appears to change with time.  If one situates 

oneself on the moving threadlike (figuratively, of course) there does certainly appear to be 

time dependence to the temperature of the filament.  This viewpoint of moving with the 

material is called the Lagrangian perspective.  Whereas the Eulerian perspective requires 

you to measure the threadlike temperature as a function of r, radial position within the 

filament, and z, axial position along the filament, in order to follow the cooling, the 

Lagrangian perspective allows you to follow the cooling as a function of r and t, where t 

is time.  Zero time should be some convenient reference—here it would correspond to 

locating yourself on the filament at the end of the stretching region and at the "beginning" 

of the cooling region.  This is equivalent to the cooling of an infinite rod, which is fixed 

in space.  The governing differential equation, which can be derived, easily using shell 

balance techniques, is: 

 

ŽT
Žθ

 =  αr
∂
Žr

(r∂T
∂r

)    (4-4) 

 

Where θ is time and α is the thermal diffusivity of the polymer.  The student will readily 

recognize this as a partial differential equation, since the temperature T depends on both r 

and θ.  In order to solve the equation quantitatively, one must specify initial and boundary 

conditions.  The boundary is naturally R, the outside radius of the filament.  The initial 

condition (� = 0) is simply: 



 
T (r,θ)  =  To  for r< R   (4-5) 

 

where To is a constant.  We need two boundary conditions, corresponding to r = 0 and r = 

R.  At r = 0, 

  T remains finite 

 

although some prefer to say: 

ŽT
Žr

 =  0      (4-6) 

Based on symmetry arguments.  At r = R, the heat arriving at the surface by conduction 

from within must match the heat leaving by convection: 

 

 -kŽT
Žr

 =  h (T - T∞)     (4-7)  

At r = R and all θ > 0.  k is the thermal conductivity of the filament (we shall assume that 

this conductivity does not change as the polymer solidifies.  h is the heat transfer 

coefficient governing the heat transfer from the surface to the surrounding air.  h can be 

estimated from various correlations if information about the velocity and direction of the 

cooling air is given.  An example of such a correlation for heat transfer from a cylinder in 

crossflow is given by Churchill and Bernstein (J. Heat Transfer, 99, 300 (1977)): 

 

NuD = 0.3 + 0.62ReD
1/2Pr 1/3

[1+(0.4/Pr) 2/3]1/4
[1+( ReD

28 200
)

5/8
]
4/5

 

 (4-8) 

 

where NuD is the Nusselt number, hD/k, (k is the thermal conductivity of the fluid in 

crossflow and D is the cylinder or fiber diameter) and ReD is the Reynolds number based 

on the fluid in crossflow.  Pr is the Prandtl number, ν/α, and is also based on the 

crossflow fluid.  The student will recall that an important advantage of presenting 

correlations in terms of dimensionless variables like Nu (dimensionless heat transfer 



coefficient) and Re (inertial stresses divided by viscous stresses) is that the resulting 

expression is often simpler, revealing more clearly the relationships among such 

variables. 

 We shall also assume that the heat of fusion is negligible, primarily because we 

want to simplify the calculation.  This assumption, especially for crystalline polymers, 

could be very poor, however, and could lead an underestimate of the cooling time by a 

factor of two. 

 As engineers, or even as normal, sane people, we would not want to solve the 

differential equation for every single set of geometries, thermal diffusivities and initial 

and boundary conditions.  We can avoid this needless energy expenditure if we express 

the differential equation in dimensionless form: 

 

ŽY
ŽX

 =  Ž
2Y

Žn2
     (4-9) 

where: 

Y =  T∞ - T
 T∞ - To

, n  =  r
R

, and X  =  α θ
R2

   
  (4-10) 

   

Y is called the unaccomplished temperature change, since it starts at unity at time zero 

and declines from there.  n is the normalized radial position, and X is dimensionless time, 

sometimes called the Fourier number.  One final dimensionless group, m, (also equal to 

1/Bi) expresses the relative resistance outside the filament to that within the filament: 

 

m =  k
h R

     (4-11) 

 

Finally, the initial and boundary conditions become: 

 

Y = 1    at X = 0 and 0 < n < 1;   (4-12) 

 



¶Y/¶n = 0      X at n = 0 and > 0.    (4-13) 

 

 - m¶Y/¶n = Y   at n = 1 and X> 0.   (4-14) 

 

The solution, Y(n, X) is then valid for any case of unsteady-state heat conduction within a 

cylindrical geometry with a uniform initial temperature and convective heat transfer from 

the surface to a surrounding fluid at a uniform temperature To.  The solution is shown in 

graphical form on the slide and is available in almost all transport textbooks.  The 

resulting charts are known variously as "Gurney-Lurie Charts" or "Heissler Charts," 

depending on which reference or form of charts you use.  An analytical solution for a 

slightly less general case is given below.  Note that, by use of dimensionless variables, we 

have successfully created a result which is applicable to a broad range of geometries and 

material properties.  For the special case in which heat transfer resistance from the surface 

of the fluid to the surrounding fluid is negligible, one can set h, the heat transfer 

coefficient, to infinity (this, of course, is equivalent to setting the temperature of that 

surface to that of the surrounding fluid for all θ > 0) and the analytical solution is: 

 

 

Y =  2 exp(-ai
2 X)

ai J1(ai)
�
i = 1

i = ∞
J0(ain)  (4-15) 

 

where J0 is the zero order Bessel function of the first kind and ai is the ith root of J0(ai) = 

0.  This solution is presented in the transport text Momentum, Heat, and Mass Transfer, 

by Bennett and Myers, 3rd ed., p. 286.  

 A solution for nonzero m, or finite heat transfer resistance to the crossflow fluid, 

is 

  

Y =  2 J1(ai)exp(-ai
2 X)

ai (J0
2(ai)+J1

2(ai))
�
i = 1

i = ∞
J0(ain)  (4-16) 



 

where J0 and J1 are Bessel functions of the first kind (zero and first order, respectively), 

and ai is the ith root of aiJ1(ai)/J0(ai) = Bi. 

 Key elements that you have learned in this section include: 

• Difference and relationship between Lagrangian and Eulerian perspective, 

• Existence of unsteady-state heat conduction charts, 

• Heat transfer resistance within objects relative to resistance outside these objects, 

• Value of dedimensionalization as a means to obtain more general solutions to 

complex equations, 

• A typical heat transfer correlation for heat transfer coefficient, h, 

• Spinning of synthetic fibers with a melt spinning process is conceptually simple, 

involving little more that the extrusion of molten polymer through fine holes and 

solidification of the resulting filaments by cooling. 
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Here, the polymer is dissolved in a solvent which  evaporates after 
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where D    is the mass diffusivity of the solvent in the polymer solution, 
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Fig. 4-3  Solvent Evaporation in Dry Spinning
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4.2 Dry Spinning 

 Unlike melt spinning, both dry and wet spinning use solvents in which the 

polymer dissolves, see Fig. 4-3.  The resulting solution or suspension is a viscous "spin 

dope."  This process necessarily introduces another species, which is subsequently 

removed, and therefore is more expensive than conventional melt spinning processes.  It 

is used in cases where the polymer may degrade thermally if attempts to melt it are used 

or in cases where certain surface characteristics of the filaments are desired—melt 

spinning produces filaments with smooth surfaces and dry spinning produces filaments 

with rough surfaces.  The rougher surface may be desirable for improved dyeing steps or 

for special yarn characteristics.   

 The term "dry spinning" is a bit misleading, since the polymer is certainly wet by 

a solvent.  Presumably, the intent here was to distinguish the two methods of solvent 

removal for the two cases of dry and wet spinning.  The solvent in dry spinning is a 

volatile organic species and this solvent starts to evaporate after the filament is formed, 

which is immediately downstream of the spinneret.  Whereas melt spinning involved 

solidification by cooling, dry spinning produces solidification of the polymer by solvent 

removal. 

 Several commercial fibers, including acrylic fibers such as Orlon™, are made by a 

dry spinning process.  You may recall that these acrylic fibers are popular as substitutes 

for wool fibers.  In any case, the spinning step which defines, in large part, the spinning 

process is that of solvent removal from the filaments.  In the case of Orlon, the polymer, 

polyacrylonitrile, is dissolved to a polymer concentration of 20 to 30 wt% in a 

dimethylformamide solvent.  Warm gases (air? — probably not, on account of the need 

for solvent recovery) are passed through the fiber bundle in the region just downstream of 

the spinneret.  This begins to look very much like the cooling crossflow in melt spinning.  

The solvent encounters both a diffusional resistance within the fiber and a convective 

resistance in moving from the surface of the filament to the crossflow gases.  Within the 

filament, the material property of greatest importance is DAB, the diffusivity of the 

solvent A through the filament B.  Here, we can characterize the diffusive flux of the 

solvent by: 



 

NA = -DAB dCA
d r

    (4-16) 

 

which is your familiar Fickian Diffusion equation.  We use the ordinary derivative here 

because the process is steady and we have not yet begun to use the Lagrangian 

perspective.  One point to emphasize here is the similarity of this equation to the Fourier 

heat conduction equation.   If we then adopt the Lagrangian perspective, we have: 

 

ŽC
Žθ

 =  DAB
r

∂
Žr(r∂C

∂r )   (4-17) 

 

Comparison with the unsteady heat conduction equation reveals the equation to be 

identical with the exception that α is replaced by DAB and T by C.  Both α and DAB 

have dimensions of length squared over time or units of cm2/s.  The initial and boundary 

conditions are also practically identical to the heat transfer case, with the assumption of 

uniform concentration profile at time zero, and zero concentration gradient on the 

filament centerline and matching diffusive and convective flux at the filament surface: 

 

C (r,0)  =  Co  for r< R and θ = 0,   (4-18) 

 

ŽC
Žr

 =  0          at r = 0 and θ>0,   (4-19) 

 

and    

 -DAB
ŽC
Žr

 =  k (C - C∞)   at r = R and θ>0. (4-20) 

 

Instead of heat transfer coefficient, h, we have mass transfer coefficient, k.  Correlations 

for k, expressed in terms of a dimensionless mass transfer coefficient, Sh (for Sherwood 



number) as a function of ReD and Sc, are also available.  Sc is the ratio of momentum 

diffusivity to mass diffusivity, ν/DAB, (for the cross flow fluid) and is comparable to the 

Prandtl number, ν/α.  Note that ν and DAB are the momentum diffusivity and mass 

diffusivity of the gas in crossflow, and not of the polymer solution.  One correlation 

(Transport and Unit Operations, 3rd ed., by C. J. Geankoplis, Prentice Hall, Englewood 

Cliffs, (1993), p 450)  for k is: 

 

Sh = 0.600 Re0.513 Sc1/3   (4-21) 

 

where Sh = (kD/DAB). The reader may want to compare other correlations with this one 

to determine the consistency of different predictions and to determine whether the 

appropriate the correlation applies to the range of variables used. 

 Just as we dedimensionalized the heat transfer equations, we can do the same for 

solvent diffusion.  The resulting equations then are exactly identical to those for unsteady 

heat conduction.  

 

ŽY
ŽX

 =  Ž
2Y

Žn2
     (4-22) 

 

Y =  C∞ - C
 C∞ - Co

, n  =  r
R

, and X  =  DAB θ
R2  (4-23) 

 

m =  DAB
k R      (4-24) 

 

Of course, T is replaced by C, α by DAB, h by k.  Therefore, the same solution (graphical 

or analytical) is obtained and the same charts can be used to obtain quantitative 

predictions of the fiber spinning process.  One can readily calculate, therefore, the Fourier 

number, X, required for the solvent concentration at the filament centerline to become 



less that 1% of the original value (Y < 0.01).  From this value for X, the actual time (in a 

Lagrangian sense, remember) can be calculated.  Finally, by multiplying this time by the 

yarn speed, the length of the solvent recovery section is obtained directly.  The analogy 

here might be that of using a conveyor belt in a tunnel oven to bake bread.  We can 

calculate the length of the tunnel oven, once we know the time to bake the bread and the 

speed of the conveyor belt. 

 Key elements learned in this section include: 

• Equivalence of fundamental equations for heat transfer and mass diffusion, 

• Similarity (and difference?) between convective equations for heat transfer and those 

for mass transfer, 

• Manufacture of synthetic fibers by volatilization of solvent from fibers produced as 

spin "dope" is extruded through small holes. 

 
 
4.3 Wet Spinning 

 Fibers produced by wet spinning include rayon and Kevlar™.  Rayon was 

originally developed as a synthetic substitute for silk and Kevlar was produced as a high-

strength fiber for use in various aerospace and specialty-use applications.  Furthermore, 

many comercial acrylic fibers are also produced by wet spinning. 

 



Wet Spinning

Rayon, Kevlar (air gap wet spinning) 
   • Lower temperature process than melt spinning 
   • For polymers that are not readily melted

Here, the polymer is dissolved in a solvent which is extracted into a liquid 
(usually water) after the solution (spin dope) leaves the spinneret.

Mass Transport

Partial Differential Equation  is the same as that for dry spinning.  Boundary conditions?
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Slow yarn speed compared to dry spinning because the viscosity of the 
surrounding fluid, water, is 100x times the viscosity of the surrounding fluid (air) 
during dry spiinning.  This causes high drag forces on the yarn, leading to very 
high yarn tensions.

Boundary layer analysis, in order to quantify drag force and mass transfer coefficient.

Fig. 4-4  Wet Spinning — Solvent Removal by Extraction or Leaching
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 As with dry spinning, the polymer is dissolved or suspended in a solvent, to form 

a viscous "spin dope"  and filaments are formed by extrusion through tiny holes in a 

spinneret plate.  Kevlar, for example, will degrade thermally if attempts are made to melt 

it, and thus a solvent must be used. The term wet spinning more accurately depicts the 

process than does dry spinning, because the solvent is extracted or, perhaps more 

appropriately, leached, from the filaments by another liquid.  In most cases, the second 

liquid is aqueous.   

 A major difference between wet spinning and either melt or dry spinning is that 

one is spinning into a fluid (liquid) with a much higher viscosity.  Because this higher 

viscosity can translate into high shearing stresses on the surfaces of the filaments, the 



tension in the filaments can become quite high.  For example, towing a buoy by a long 

line behind a boat can produce very high tensions in the line when compared with towing 

the same buoy by a short line.  For long baths, the tension can become sufficiently high 

that the filaments might break, as their tensile strength is exceeded.  To avoid this danger, 

much lower spinning speeds must be used.  Whereas melt spinning may utilize spinning 

speeds of 2,000 yards per minute (80 mph), spinning speeds in wet spinning are usually 

less than 300 ypm.  

 Another difference with dry spinning is the capability of using many more 

spinneret holes in the case of wet spinning.  The total number can approach 60,000 in a 

single spinneret plate, if the spinning is done directly into a coagulating or extracting 

liquid.  Because the liquid is present, the filament forms a type of skin almost 

immediately and the potential for the filaments to touch and fuse is practically eliminated, 

compared with dry or melt spinning.  

 In the case of Kevlar the spin dope is relatively warm, about 100°C, and forms a 

viscous, liquid crystal.  The solvent is sulfuric acid, at a concentration of about 80 wt% 

(20 wt% polymer).  These liquid crystals are easily oriented by a stretching motion, but 

they can lose their orientation, presumably by Brownian motion, once the stretching is 

stopped.  Therefore, during the spinning process, the filaments are first extruded through 

an air gap, where the filaments undergo strains of 2 to 3x, which produces a high degree 

of molecular orientation in the filaments, and then they are suddenly “quenched.”  This 

air gap is of the order of one inch.  It also allows the spinneret plate to be warm (100°C) 

while the extraction bath can be cool (ca 15°C).  The hot filaments then strike the cooling 

bath where the filaments are quenched and much of the orientation is locked in by the 

rapid cooling action.  Subsequent to the quench step, the solvent is extracted, which 

requires a relatively long bath contact time.  But the initial quenching step is crucial, since 

it allows for the oriented molecules to be "frozen" into position.  This orientation is 

particularly important to the high-strength properties of Kevlar—the filaments, on a 

weight basis, are significantly stronger that steel.  If one attempts to use the same process 

to produce Kevlar filaments of large diameter, the core of the filaments can lose its 

orientation, because the quench time to reach the core will increase with the square of the 



filament radius.  The filament skin, or the outer part of the filaments, however, will have 

the orientation locked in and a high degree of orientation will exist there.  This produces a 

so-called "skin-core" effect, in which the average properties of the filaments, expressed as 

tensile strength per unit cross-sectional area, will decline on account of a decreased 

average orientation. 

 Kevlar, with its focus on strength development via "air-gap" wet spinning, is 

somewhat unique within the process of wet spinning.  As with melt- and dry- spinning, 

the controlling part of the process is associated with development of the filament 

structure, either by cooling of the filament or by removal of the solvent.  The equations 

for diffusion in wet spinning are identical to those for dry spinning, with the exception 

that the fluid passing outside the filaments is a liquid and not a gas.  Also, the flow may 

not be across the filaments, but even, partially, along the filaments. Therefore, the 

correlations and nature of the flow surrounding the filaments will result in different 

values for the surface mass transfer coefficient.  Whether this will change the relative 

resistance dramatically will depend on the particular fiber to be produced and its 

dimensions and properties.  Note that the same graphical solutions described earlier can 

be used.   

 To design a wet-spinning process, it may be necessary to predict the transport of 

momentum, heat, and mass in the region adjacent to the filament just downstream of the 

spinneret.  One can use a so-called "boundary-layer" analysis to do this.  Treatment of 

such an analysis is beyond the scope of the present discussion of fiber spinning, but a 

brief description of the analysis is appropriate.  One form of boundary-layer analysis 

involves von Karman integral boundary-layer techniques. The boundary layer starts at 

zero thickness at the first point where the fiber contacts the extracting liquid, and grows 

gradually radially outwards from each filament as one proceeds downstream.  The 

velocity profile inside the boundary layer is assumed and all of the velocity change 

between the filament and the surrounding fluid is contained within this "momentum" 

boundary layer.  Similarly, thermal and diffusional boundary layers contain all the 

changes in temperature and concentration, respectively.  Based upon approximations of 

these velocity profiles, frequently assumed to be turbulent, the variation in filament drag 



with position can be predicted, along with local heat and mass transfer coefficients.  The 

student is referred to the text Transport Phenomena, by Bird, Stewart, and Lightfoot, 

Wiley, New York (1960) for additional details of such integral boundary-layer 

techniques. 

 

 Key elements of the wet spinning process include: 

• Similarity of governing equations to melt and dry spinning, 

• Lower spinning speeds in wet spinning, 

• Structure development in air-gap spinning of Kevlar and skin-core effects, 

• Qualitative introduction to boundary-layer concepts. 

 

5.0 Fiber Treatment & Miscellany 

 In order to start up a fiber spinning line, the filament bundle must be  "strung up" 

along the process path.  The first stage of the spinning process is vertically downwards, so 

gravity will tend to pull the line downwards.  The line is caught with a large vacuum 

nozzle and, almost simultaneously, the line beneath the nozzle is cut with scissors.  The 

line now is sucked into the nozzle, which functions exactly like a home cannister style 

vacuum cleaners, with the fiber piling up in a large drum.  The suction at the nozzle keeps 

the spinning line under tension.  The line is then passed over pairs of drive rolls, 

described below, and then over certain stretching/orientation steps, if needed.  Finally, the 

line is taken to a take-up device which winds the fiber bundle onto bobbins. In order to 

maintain a uniform takeup speed, the rotational speed of the bobbins must decrease as 

additional fiber is laid on it and the average diameter increases.  This decrease in 

rotational speed is controlled by keeping the tension constant in the takeup line. The 

tension is sensed by deflection of an idler wheel located between the last drive roll and 

the take-up machine.  The idler wheel is located on a type of cantilever beam, so that the 

deflection is a measure of the tension in the line.  The position of the wheel, and thus the 

line tension, is maintained constant by adjustment of the take-up speed.  

 The drive rolls are always characterized by having non-parallel axes.  This permits 

the threadline to advance in the axial direction on the rolls as the line is strung multiple 



times around the rolls.  The rolls, which are usually highly polished, permit no slip on the 

surface on account of the multiple wraps on each pair of rolls and the tension in the line.  

This is somewhat like the calculation of frictional force for a rope wound around a post, a 

calculation the student probably performed in a statics course. 

 Because the drive rolls permit good speed control for each pair of rolls, it is 

possible, by having the second pair of drive rolls moving faster than the first, to control 

the degree of stretch the fiber undergoes between the two pairs of rolls.  This stretch, 

which may range from a few percent to 20 or 30%, helps to impart desired molecular 

orientation, and thus desired mechanical properties, to the fiber bundle.  Sometimes it is 

necessary to heat the bundle to a temperature above Tg, the glass transition temperature, 

but below the melt temperature, in order to facilitate significant stretches without 

imparting excessive line tension.  Usually, the strain gives the fiber a higher modulus 

(stress over strain), or stiffness, in the axial direction and higher tenacity, or strength to 

break per unit cross sectional area. 



Stretching and Orientation
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Drive Rolls

Provides excellent control of yarn speed, recall 
friction for rope wound around a post

3500 ypm

Stretching ——  between two pairs of drive rolls, with 
 second pair driven faster

V           
V - 1  = "stretch" or strain2

1

Recall mechanics:        
  stress  α  strain, 
Hookean elasticity

Here we have permanent deformation, which orients the 
polymer molecules in the same direction as the stretch. 
This produces higher modulus (stress/strain) and higher 
strength

heat

To temp > T   = 

V

V2

1

g
Glass Transition 
Temperature (but 
below melt temp)

Speed control of take-up device: 
     This speed is adjusted in response to the tension in the yarn; 
speed increases as tension decreases.  Tension is detected by  
measuring deflection of an idler wheel that is spring-mounted.

Fig. 5-1 Fiber Stretching and Orientation  
 

Table 5.1 summarizes several areas which would be convenient for post-presentation 

elaboration, or, perhaps, illustrative asides. For example: 

 

 Analytical solution of Partial Differential Equations  The diffusion equation is 

seen frequently in the physical sciences, and presents a nice starting point for 

mathematical topics, including techniques of separation of variables, inhomogeneous 

boundary conditions, etc. 

 



 

 Table 5.1 Topics for Elaboration

• Analytical Solution of PDE (partial differential equations)

• Graphical Presentation of Results — Gurney-Lurie Charts, Heissler Charts

• Continuous cylinder of uniform radius vs.Melt spinning result 
               (declining radius); Fiber optic cables,  
• Short cylinders:  cooling cans of soda, pasteurizing foods, polymer 
 resin particles

• Other geometries or applications

Slabs — Cooling of float glass, cooling of metal slabs

Spheres — drying of porous spheres, cooling of molten pellets, etc.

Brick = special case (three slabs), Newman's Rule

• Convection currents inside object, if a fluid  
 

 Gurney-Lurie & Heissler Charts  These charts depict very nicely several physical 

results of unsteady-state conduction and diffusion.  These include the "nearly 

exponential" decline of unaccomplished change with time and, similarly, the dependence 

on the square of characteristic dimension, via the Fourier number.  Similarly, the relative 

resistance effect can be seen clearly, along with quick calculations to indicate 

quantitatively, when a lumped-parameter model, where, for example, internal resistance 

could be neglected, would be appropriate. 

 

 Application to Other Cylindrical Geometries  Direct applications could include 

glass fiber-optic cable and extrusion of rod-shaped polymer material, although one could 

extend the calculations to food processing, such as sterilization times for cans of food 

placed in a steam oven, or cooling of cans of soda, etc. 

 

 Complications of Declining Radius and Finite Heat of Fusion  The student can 

recall that these complications were removed during our treatment so that we could 



proceed with the analysis.  One could account for the declining radius by patching 

together successive solutions of uniform diameter and uniform temperature to 

approximate the smoothly varying geometry with one varying in steps.  This would 

require knowledge of the extensional rheology as a function of temperature, however.  

Similarly, one would have to know the heat of fusion in order to account for its effect.  If 

the total amount of heat to be removed by fusion is of the same order as that of the 

sensible heat, then the Fourier time calculation is likely to be too short by a factor of two 

or so. 

 

 Extension to other Geometries  These would include infinite slabs, for example in 

the manufacture of float glass or cooling of metal slabs or ribbons of steel.  Extension of 

the infinite slabs to Newman's rule so that three-dimensional bricks can be treated by 

using three separate one-dimensional solutions.  Spheres are also very important, for 

example, in the removal of unreacted monomer, VCM (vinyl chloride monomer), from 

PVC (poly-vinylchloride) spheres made by suspension polymerization or drying of porous 

spheres, and cooling of molten metal pellets, etc. 

 

 Convection Currents Inside an Objects  The time to cool a soda can will be less 

than that calculated from the charts because convection currents will become established 

with the can that will hasten heat transfer from the can.  This is somewhat like the 

familiar example from heat transfer courses which states that ice cubes can be made more 

quickly from tepid water than from cold water on account of the establishment of such 

convection currents, which will more than compensate for the greater amount of heat to 

be transferred.  The author does not recall seeing any confirming experimental results, 

however. 
 


